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Geometric control of failure behavior in perforated sheets

Michelle M. Driscoll*

The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
(Received 29 August 2014; published 10 December 2014)

Adding perforations to a continuum sheet allows new modes of deformation, and thus modifies its elastic
behavior. The failure behavior of such a perforated sheet is explored, using a model experimental system: a
material containing a one-dimensional array of rectangular holes. In this model system, a transition in failure
mode occurs as the spacing and aspect ratio of the holes are varied: rapid failure via a running crack is completely
replaced by quasistatic failure, which proceeds via the breaking of struts at random positions in the array of
holes. I demonstrate that this transition can be connected to the loss of stress enhancement, which occurs as the
material geometry is modified.
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I. INTRODUCTION

Material failure occurs in many ways: from plastic de-
formation [1,2], to slowly creeping fatigue damage [3,4],
to a sudden and catastrophic (brittle) failure of an entire
structure [5,6]. This variety of failure modes hints that
individual material properties must determine a structure’s
fate. Fracture mechanics has made much progress in predicting
when a structure will start to fail, for example by giving
analytic solutions for stress and strain fields created by cracks
in simple geometries [7,8]. However, there are still many
open questions. For example, fracture mechanics makes no
prediction about what path a running crack will follow; this
is an input parameter to the theory [9]. Furthermore, fracture
mechanics is a continuum theory and it is not necessarily clear
how the predictions it makes map to structures with complex
geometries.

One such geometry is a perforated structure, created by
introducing holes into a continuum solid. Introducing these
holes creates a new metamaterial that can deform in very
different ways, ways that are too energetically costly in a
continuum solid. Thus, these metamaterials will have different
material properties, which will depend on the perforation
spacing and on the geometry of the holes [10–13].

In this work, I study the failure of perforated metamaterials.
A material with a one-dimensional array of holes is used as a
model system to study how geometry modifies failure behav-
ior. I find that the failure behavior of this one-dimensional
system can be characterized in terms of hole spacing and
geometry, and a distinct transition in failure mode occurs as the
material geometry is modified. This transition is characterized
by a change in failure dynamics as the perforation geometry is
altered: failure via a running crack state is replaced by failure
via quasistatic, random breaking. I note that a transition from
running cracks to damage coalescence of isolated breaking
sites has been observed in nearly-isostatic elastic networks
and honeycomb lattices approaching (prior to breaking) a
critical point where the relevant elastic moduli vanish [14].
Figure 1 illustrates this transition in failure behavior; in the
propagating crack regime, failure occurs very rapidly and in
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an ordered manner, while in the random-breaking regime,
failure occurs in a nonordered manner, and at a time scale set
by the displacement rate of the material, i.e., quasistatically.
Furthermore, I show that this transition can be connected with
a loss of stress enhancement in the material as geometry is
altered.

Note that in these studies of perforated materials the
individual bonds all have nearly identical strengths—there is
no disorder in the system. This is distinct from other models
that have been studied, such as the fiber bundle model [15–17],
where the amount of disorder is varied and produces changes
in the way in which the material fails. The present experiments
focus specifically on the role of geometry (while keeping the
amount of disorder fixed) on the failure mode of the material.

Looking at material failure through the lens of geometry
provides a new insight into how a material fails, and it provides
a direct relationship between a metamaterial’s microstructure
and its overall failure behavior. Furthermore, these results
allow for the possibility of a tunable failure mode—by simply
changing geometry, the same base material can be used to
construct a suite of metamaterials with very different failure
behaviors.

In the next section, I give a brief overview of the previous
work that has been done on fracture in perforated sheets.
Section III outlines the details of the experimental work,
as well as the finite-element calculations that were done.
Section IV discusses in detail the transition in dynamics that
occurs, and how it is controlled by material geometry. In the
running crack regime, geometry acts to additionally control
the velocity of the crack; this is presented in Sec. V.

II. BACKGROUND ON FRACTURE
OF PERFORATED SHEETS

The fracture of perforated solids has been the subject of
extensive study, often in the context of measuring material
properties such as failure stresses and strains [18–21]. For
example, perforated geometries have been used as a model
system for ductile failure, which is thought to occur via
the growth of small voids which then coalesce into a larger
defect. Several experimental and numerical studies have been
conducted in perforated metal sheets [22–24]; the focus of this
work has been on measuring or predicting failure strains and
stresses as a function of void fraction or void arrangement
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FIG. 1. (Color online) When the geometry of the 1D metamate-
rial is changed, the failure mode transitions from a running crack to
random breaking; the strut breaking order as well as the total failure
time, τ (time interval between first and last break) changes markedly.
Numbering and color both indicate strut breaking order; the color map
runs from red to blue. (a) When the struts composing the material are
small and spaced relatively closely, failure proceeds via a propagating
crack: defined as ordered breaking of struts, which occurs at speeds
comparable to material sound speeds. Here, τ = 149.3 μs. (b) A
transition in failure mode occurs when the struts become long and
narrow, or spaced far apart from each other. In this regime, failure
occurs via the breaking of struts in a nonordered fashion, and the
breaking rate is set by the pulling rate, i.e., failure is quasistatic.
Here, τ = 1.58 s.

in order to gain insight about ductile failure in a continuum
material. Another recent study examined the failure of an array
of perforations in a thin plastic sheet [25], finding a transition
in failure from localized interhole failure to large-scale plastic
deformation. This work only examined quasistatic plastic
failure, and those results do not generalize to brittle solids.

A propagating crack in a continuum sheet moves at a
velocity comparable to material sound speeds; an advancing
crack should accelerate as it grows, until it travels at the mate-
rial’s Rayleigh velocity, cR (the speed of surface waves) [26].
However, in practice, it is often found that cracks only acceler-
ate up to a velocity ∼0.5cR before exhibiting branching [27,28]
or other dynamic instabilities [29–31]. However, if these
instabilities are suppressed, cracks are observed to move at
speeds very near to the Rayleigh velocity [29] in continuum
sheets.

In comparison to the large body of work done in continuum
solids, very few studies have measured crack dynamics in
a perforated material. The velocity of a running crack in
a perforated material has been measured in at least one
study [32], but this work focused on examining the behavior
of fracture at weak interfaces. A line of perforations was
used as a model for a weak interface in order to compare
the results in the perforated geometry with results obtained in
materials with a weak plane. A dependence of crack velocity on
hole area fraction was found, but as the perforated geometry
was not the main focus of this work, only a very small set
of hole geometries was tested, and only one material was
used. Here, I show that in a perforated material, geometry

acts a control parameter for the crack velocity, independent of
material properties.

III. METHODS

Two approaches were used to study failure in a perforated
material. The bulk of the work was experimental; samples
were put under tension until failure, and the resulting failure
behavior was analyzed in terms of the material geometry. To
complement the experimental work, finite-element calcula-
tions were done to measure elastic properties, as well as to
gain insight into how stress fields are modified by geometry.

A. Experiments

The experimental samples were fabricated from thin (0.75–
1.5 mm thick) sheets of plastic. Thin sheets were used to
approximate a two-dimensional solid geometry. The bulk
of the work was conducted using 1.5-mm-thick cast acrylic
sheets purchased from McMaster-Carr, which had Young’s
modulus Y = 3.7 GPa, Poisson’s ratio ν = 0.35, and density
ρ = 1157 kg/m3. A small selection of control tests was
performed using two additional plastics, 0.75-mm-thick Delrin
150 sheets (Y = 3.1 GPa, ρ = 1394 kg/m3, ν = 0.4) and
0.75-mm-thick impact-modified acrylic sheets (Y = 1.76 GPa,
ρ = 1115 kg/m3, ν = 0.4).

The samples were fabricated by using a laser cutter (ULS
VLS4.60) to create a ladder geometry, consisting of a one-
dimensional (1D) array of struts of width d and length l,
separated by a spacing of s, as illustrated in Fig. 2(a). Thus,
a family of 1D geometries could be constructed by varying
the ratio s/d from 0.4 to 50 and the ratio l/d from 0.2
to 79.5. Additionally, a set of control experiments was run
where the absolute value of d was varied from 0.6 to 4.7
mm. The holes in the laser cut samples are not perfectly
rectangular due to the finite resolution of the laser cutter
(∼50–100 μm); the corners are slightly rounded with a
radius of curvature ∼140 μm. However, it is not believed
that this small amount of rounding influenced the results, as
experimental stress and strain measurements produced good
agreement with finite-element calculations which did not have
these slightly rounded corners.

As shown in Fig. 2(a), the samples have tabs on two sides
so they could be clamped to a materials tester for the failure
studies. The size of these tabs does not impact the results; most
of the strain occurs in the perforated part of the samples. The
effect of tab length was explicitly tested by varying the tab
length by a factor of 2; this produced no change in the results.

All samples were broken under uniaxial tension, often
termed Mode I failure; the displacement direction is defined
as the ŷ direction. A custom apparatus was constructed
for displacement controlled failure experiments as shown in
Fig. 2(a). One end of the sample is held on a fixed stage,
machined from cast aluminum (MIC 6), while the other end
is held on translation stage made from a cast aluminum block
firmly attached to a machine vise. A geared down dc gear
motor was used to drive this translation stage at a constant
displacement rate of 83.0 ±0.5 μm/s.

Extreme care was taken to ensure that the fixed stage was,
to the nearest mil, machined to be the exact height as the
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FIG. 2. (Color online) (a) Imaging studies were conducted us-
ing a custom-built apparatus. The samples are held fixed at one
boundary, while the other boundary is displaced at a constant rate.
Enlargement indicates the parameters that characterize the hole size
(s,l) and spacing (d). (b) Force-displacement curves for two sample
geometries, d = 1 mm, s = 2 mm, l = 2 mm (left) and d = 1 mm,
s = 2.5 mm, l = 5 mm (right). The lines show the data obtained
from the experimental samples, while the open symbols show the
results of finite-element calculations. The good agreement between
measurements and calculations demonstrates that the samples behave
in a nearly linear fashion.

translation stage. This was done to ensure the samples would
experience an even loading, so the failure behavior could be
assumed to occur under pure uniaxial tension. As illustrated in
Fig. 2(a), the samples are attached to both the translation stage
and the fixed stage via cast aluminum bars. Screws were used
to apply pressure to the bars, clamping the samples down.
Again, care was taken to machine both the surfaces of the
stages as well as the bars to be as flat as possible so as not
to induce uneven loading conditions. Failure was observed to
initiate on both sides (left and right) of the samples, verifying
that they experienced a uniform loading condition.

A high-speed camera (Vision Research, Phantom v1610
and Phantom V9) was used to record the fracture behavior at
speeds up to 400 000 fps. The samples were backlit with
an 18 W LED light panel (rosco LitePad HO+). Use of
an LED panel assured no significant heat was input to the
samples, as significant heating could cause a change in material
properties [33]. For some experiments, crossed polarizers
(Edmund Optics) were used to image the stress field of the
sample. This aided in determining the precise location where
material failure occurred, as the sample halves only separated
by a small amount during the failure process.

An additional series of tests was performed in a commercial
materials tester (Instron 5869) in displacement-controlled
mode: a constant displacement is applied to the samples,
while the force is measured. A 50 kN load cell was used

for these tests, as the force required to break the samples
ranged from 200 to 1200 N. Due to the size constraints of the
materials tester, the samples fabricated for materials testing
were confined to be 25.4 mm or less.

Figure 2(b) shows the measured force-displacement curves
for two sample geometries demonstrating that the curves
appear quite linear until failure. Overlaid on the measured
curves are the results of finite-element calculations (COMSOL,
v4.4) of the force-displacement response for the same geome-
tries. At small strains, the calculations agree very well with
the measurements, emphasizing that these materials remain
reasonably close to a linear material, even when near failure.
Slight deviations from the linear behavior become apparent
only after the strain has reached half of its value at failure.

B. Finite-element calculations

In addition to the experiments, finite-element calculations
were performed using a commercial package (COMSOL, v4.4).
Simple geometries were constructed directly with the COMSOL

interface to facilitate parameter sweep testing (a suite of
studies done by varying one geometric parameter). The model
numerical samples were always made to be identical in size
and elastic properties to the experimental samples. To construct
more complex geometries, the computer-aided design (CAD)
files used as laser cutter patterns could be directly imported
into COMSOL. All calculations were done using the plane stress
2D approximation, as appropriate for a thin plate.

Two types of calculations were done in the 1D geometry.
To study stress enhancement as a function of geometry,
the constant displacement conditions used in the failure
experiments were reproduced: all sample boundaries were free
except the upper and lower boundary. The lower boundary was
held fixed and the upper boundary was displaced by a fixed
amount corresponding to a strain of 0.005. Two tests were
performed, one in a pristine geometry and one in which one or
more struts were “broken.” A break was modeled by manually
inserting an additional free boundary (i.e., a cut) in the middle
of a strut. The computed stress field (σyy) from both tests was
then analyzed to look for evidence of stress enhancement.

An additional set of calculations was performed to compare
with the Instron test results [Fig. 2(b)]. Here, the lower edge of
the sample was held fixed and a constant force was applied to
the upper edge of the sample. This allowed the (maximum)
displacement of the sample to be measured and directly
compared with the materials-testing results.

IV. ONE-DIMENSIONAL FRACTURE:
TRANSITION IN FAILURE MODE

When the holes in the 1D samples are relatively small and
spaced relatively close together, the perforated geometry fails
in a manner similar to a solid piece of plastic via a running
crack [as shown in Fig. 1(a)]. Here, the term “running crack”
is used to describe failure that, once initiated, spreads across
the sample at velocities comparable to material sound speeds,
with no additional applied strain. The running crack state is
characterized by the struts comprising the sample breaking
in rapid succession, and in a directed manner (only nearest-
neighbor breaks).
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FIG. 3. (Color online) Transition in failure mode. (a) As l/d

increases, the failure time τ increases dramatically. Data for two
displacement rates are shown. Tests were performed at constant
s/d = 3. (b) The fraction of nonadjacent breaks, f , increases with
l/d as well. (c) f vs s/d; tests were performed at constant l/d =
2. As s/d increases, the fraction of nonadjacent breaks, f , increases
dramatically. (d) All of the data in (b) (circles) and (c) (triangles) can
be collapsed by plotting f as a function of l+cs

d
, where c = 0.25 ± 0.1.

When the struts are long and narrow, or are spaced very far
apart, a different mode of failure occurs: random-breaking. In
this regime, the struts do not break in an ordered manner; many
non-nearest-neighbor breaks occur [as shown in Fig. 1(b)]. The
breaking rate in this regime is orders of magnitude slower than
in the running crack regime; failure does not spread across
the sample after being initiated—additional failure requires
additional applied strain.

To characterize this transition between the two failure
modes, I used two measures: failure time, τ , and the fraction
of nonadjacent breaks, f . Failure time is defined as the time
for the material to completely break into two separate pieces.
The fraction of nonadjacent breaks, f , is defined as the ratio
of the number of struts that fail at a position not adjacent to
the last strut to fail, normalized by the total number of struts.
Figures 3(a) and 3(b) shows how τ and f dramatically increase
as the struts become long and narrow, i.e., as l/d increases.

When l/d is small, failure occurs via a running crack,
moving at a velocity comparable to the material sound velocity,
thus τ is very small. However, as l/d increases, τ becomes
orders of magnitude longer. The saturation of τ at high l/d is
a reflection of the displacement rate applied to the samples. To
confirm this, identical tests were conducted at a displacement
rate that was five times slower, 17.4 ± 0.9 μm/s. As shown by
the open symbols in Fig. 3(a), changing the displacement rate
only changes the saturation value at high l/d, and does not
change the failure time at low l/d.

Along with a transition in τ , there is a transition in breaking
order as illustrated in Fig. 3(b), which shows the fraction of

nonadjacent breaks, f , versus l/d. At small l/d, adjacent struts
break as a crack runs across the sample. However, as l/d is
increased, this no longer occurs; most breaks are not at adjacent
struts, and therefore f increases. At high l/d, f saturates,
as there is always some small fraction of adjacent breaks.
Figures 3(a) and 3(b) thus illustrate that l/d serves as a control
parameter for failure, changing both the failure time scale and
breaking pattern of the sample.

However, l/d is not the only control parameter for this
transition in the failure dynamics. Figure 3(c) illustrates that
a similar transition in failure behavior is observed as s/d

is varied. As seen in that figure, f increases dramatically
as s/d is increased. As the struts become spaced farther
and farther apart, failure via a running crack crosses over to
random-breaking, similar to what was observed when l/d was
increased.

A comparison of τ as a function of s/d is not shown,
as the samples used for this test varied largely in size, thus
making comparisons of absolute time difficult. (Changing s/d

experimentally requires making larger and larger samples to
ensure a sufficient number of struts in each sample.) However,
f is a normalized quantity, and thus is independent of sample
size; it serves as a suitable control parameter to characterize
the transition in dynamics as seen in Fig. 3(c).

Figures 3(a)–3(c) illustrates that there are two independent
control parameters for the transition from running cracks to
random-breaking. Neither s/d nor l/d alone is sufficient to
parametrize the transition; both of these geometric parameters
control the failure dynamics separately. However, Fig. 3(d)
demonstrates that all of the data can be collapsed onto a single
curve by plotting f versus l+cs

d
, where c = 0.25 ± 0.1. This

rescaling is consistent with the observation that both l/d and
s/d control this transition, but in independent ways.

When a single strut is broken, the stress on the rest of the
sample necessarily increases. More or less of this stress will
be borne by the remaining struts, depending on the material
geometry. To gain insight into how the stress enhancement
on the struts varies as a function l/d and s/d, finite-element
calculations (COMSOL, v4.4) were performed (for details, see
Sec. III B). A test geometry was input into COMSOL and a fixed
displacement was applied. Then σyy was measured in all of the
struts. Here, σyy is the average value of the yy component of the
stress field in the strut, where the spatial average is computed
over the entire surface of the strut. When no struts are broken,
this stress field is relatively uniform across the entire sample,
as shown in Fig. 4(a). However, when a break was inserted
into the middle strut, an enhancement in stress was found
in the remaining struts, as shown in Fig. 4(b). This stress
enhancement was observed whether the break was inserted
near the center or at one edge of the sample.

However, this enhancement in stress depends strongly on
the material geometry, as shown in Figs. 4(c) and 4(d). Here,
the normalized stress enhancement, �, is defined as

� = σyy(after break) − σyy(before break)

σyy(before break)
, (1)

and is measured for each strut. Figures 4(c) and 4(d) presents
the measured stress enhancement for two sets of calculations,
one in which s/d was varied at fixed l/d = 2, and one in
which l/d was varied at fixed s/d = 3. As seen in that figure,
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FIG. 4. (Color online) Finite-element calculations of the stress enhancement due to a broken strut. (a) Stress on each strut (σyy) vs strut
number; each point represents the total stress on a single strut. The inset shows a visualization of the stress field in the sample (σyy); see the
color bar for scale. (σyy represents the stress averaged over the strut surface.) (b) Stress per strut (σyy) vs strut position after the center strut is
broken. There is an enhancement of σyy adjacent to the break location. The inset shows a visualization of the stress field in the sample (σyy);
see the color bar for scale. (c) and (d) Normalized stress enhancement, �, vs strut number, for various values of (c) s/d and (d) l/d . The
calculations are for a center-broken strut; points represent the average over the left and right sides of the sample. � is a strong function of
material geometry. (e) and (f) The maximum stress enhancement, �0, vs (e) s/d and (f) l/d . Data are shown for both crack geometries, i.e., a
center crack (filled symbols) and an edge crack (open symbols). In all cases, �0 decreases dramatically as either s/d or l/d is increased. Insets
show the width of the stress enhancement, �̄. �̄ remains relatively constant as s/d and increases as l/d is increased.

in all cases, � is largest near the broken strut and then decays
further away from the break. As either s/d or l/d is increased,
the peak value of � decreases.

To quantify the overall decrease in stress enhancement
shown in Figs. 4(c) and 4(d), we will use the maximum value,
�0 ≡ max(�), and the width, �̄, of the stress enhancement.
Figures 4(e) and 4(f) show a plot of the maximum stress
enhancement, �0, as l/d and s/d are varied. Calculations
were done in two crack geometries: a center break and an edge
break.

As seen in Figs. 4(e) and 4(f), in all cases, a transition in �0

is observed when either l/d or s/d is increased; �0 is relatively
constant, but then begins to drop rapidly. This transition occurs
near l/d ∼ 5 and s/d ∼ 10, values that are consistent with the
experimentally observed transition in failure mode (see Fig. 3).
The insets in Figs. 4(e) and 4(f) show �̄, the width of � curves,
as a function of s/d and l/d. �̄ increases modestly as l/d is
increased, but remains constant as s/d is increased. The width
was determined by fitting a Gaussian to the � profiles.

The geometric parameters l/d and s/d separately control
the transition between the failure modes, as demonstrated
Fig. 3. Likewise, l/d and s/d separately control the stress
enhancement present after a strut is broken, as shown in
Figs. 4(e) and 4(f). This suggests that the data in Figs. 4(e)
and 4(f) can be collapsed in the same manner as the f versus
l/d and f versus s/d experimental data. This collapse is shown
in Fig. 5. Here, the stress enhancement data of Figs. 4(e)
and 4(f) have been replotted as a function of (l + cs)/d,
akin to the collapse used for the experimental measurements.

As seen in that figure, the data collapse reasonably well for
both crack geometries, suggesting that the appearance of the
random-breaking failure mode may be due to a loss of stress
enhancement. Although the parameter c differs slightly in the
collapse of the numerical and experimental data, in all cases c

is of order 1. Furthermore, it is not clear that c should be the
same for all cases, as physically different quantities are being
collapsed. Thus, what is relevant is that the same functional
form can be used to collapse all of the data sets, emphasizing
that l/d and s/d separately act as control parameters.

By itself, the suppression of stress enhancement due to
strut-breaking does not explain why at high l/d and s/d

fracture proceeds via the breaking of struts at random positions
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FIG. 5. (Color online) The stress enhancement data [Figs. 4(e)
and 4(f)] can be collapsed for both crack geometries by plotting �0

as a function of l+cs

d
. (a) �0 data from the center-crack geometry.

The data were collapsed using c1 = 0.8 ± 0.1. (b) �0 data from the
edge-crack geometry. The data were collapsed using c2 = 1.3 ± 0.1.
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along the line of failure. However, it is possible that once the
stress-enhancement effect has been sufficiently suppressed, so
that the nearest-neighbor strut is not preferentially broken, it is
inherent material disorder that determines the strut breaking.
Any disorder due to fabrication or material inhomogeneities
should be randomly distributed; this may explain why the
running crack crosses over to failure by random breaking
events.

The stress enhancement data in Figs. 4(e) and 4(f) are
calculated after breaking a single strut. To investigate how
�0 was modified by many breaks, calculations were done
that simulated an extending crack: neighboring struts were
broken one-at-a-time from left to right. Figure 6 shows a
plot of �0 versus the number of broken struts for three
samples, one in the running crack regime (s/d = l/d = 2)
and two in the random breaking regime (s/d = 2,l/d = 50
and s/d = 30,l/d = 2). As more struts are broken, �0 first
increases but then quickly plateaus. Furthermore, at large l/d

or s/d, the stress enhancement, �0, always remains much
below the value at small l/d/s/d, even when many struts are
broken. Thus, the loss of stress enhancement demonstrated at
high l/d or s/d remains throughout the breaking process.

In conclusion, in this 1D perforated system, a transition in
failure mode is observed as a function of material geometry.
The parameters s/d and l/d can separately be tuned to change
the failure mode from dynamic (a running crack) to quasistatic
(random-breaking). Furthermore, this transition appears to be
connected to the loss of stress enhancement which occurs when
either l/d or s/d becomes large.

V. CRACK VELOCITY AS A FUNCTION OF GEOMETRY

As discussed in the preceding section, when l/d � 5 or
s/d � 10, the 1D samples fail via a running crack; struts break
in rapid succession and in an ordered manner. Within this
dynamic fracture regime, there are two velocity regimes. At
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FIG. 7. (Color online) (a) Crack velocity vs s/d . An unperforated
material is represented by s/d = 0. There are two dynamical regimes:
s/d < 1, where the velocity increases with increasing s/d , and s/d >

1, where the velocity is independent of s/d . The arrow indicates the
Rayleigh wave velocity in acrylic, 1017 m/s. (b) The simple model of
Eq. (2) does not agree with the data, as indicated by the dashed line.
The fit was obtained by forcing the model to agree with the points
where s/d < 1. (c) Crack velocity vs strut aspect ratio, l/d . The crack
velocity is independent of strut aspect ratio (when l/d � 5). These
tests were conducted for fixed s/d = 3. (d) Crack velocity vs d , at
a fixed value of s/d = 3. The crack velocity is independent of d;
the dashed line represents the mean value of v. (e) Crack velocity
vs s/d for three different materials: acrylic (blue circles), delrin (red
open squares), and impact-modified acrylic (green asterisk). (f) The
same data, with the crack velocity normalized by the Rayleigh wave
velocity in each material, cR . The nondimensionalized data collapse,
and thus they do not show any dependance on material properties.

fixed l/d, the crack velocity, v, can be tuned by adjusting s/d,
the ratio of hole size to spacing, as shown in Fig. 7(a). When
s/d < 1, v is an increasing function of s/d. However, behavior
changes when s/d > 1; v saturates and becomes independent
of s/d.

What sets the overall shape of the v versus s/d curve?
The simplest hypothesis is that the running crack moves faster
because it has to create less and less free surface, e.g., the
relative fraction of strut width to hole length is lower. A simple
model based on this hypothesis assumes that the crack travels
through the struts at one velocity, vd , but then travels through
the “hole region” at a different velocity, vs . Thus the crack
velocity through the entire piece of perforated material, 〈v〉,
will be a function of both vd and vs :

〈v〉 ≡ �x

�t
= d + s

d
vd

+ s
vs

= 1 + s/d
1
vd

+ (
s
d

)
1
vs

. (2)
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However, this model fails completely to capture the ob-
served behavior, as illustrated in Fig. 7(b). The dashed line was
obtained by forcing Eq. (2) to fit the points where s/d < 1,
i.e., where the velocity appears to be increasing. While the
model can be fit to the data at low s/d, it predicts qualitatively
incorrect behavior for s/d > 1: a steadily increasing velocity
rather than the experimentally observed plateau. Thus, this
simple hypothesis does not explain why the crack velocity is
controlled by s/d.

In contrast to the effect of changing s/d, changing the
aspect ratio of the struts, l/d, has no effect on crack velocity.
As shown in Fig. 7(c), l/d is varied by a factor of 25, but the
crack velocity remains unchanged. As long as the aspect ratio
is small enough so that the running crack state exists (l/d � 5),
the crack velocity is independent of l/d.

It should be noted that it is the ratio of s/d that controls the
crack velocity, not the absolute value of d. This is illustrated
in Fig. 7(d). The absolute value of d is changed by almost a
factor of 8, yet all of the points remain within error of each
other.

In this running-crack regime, it appears that crack velocities
are set by geometry alone. As a stringent test of this hypothesis,
additional experiments were conducted in two other materials:
impact-modified acrylic (Y = 1.76 GPa, ρ = 1115 kg/m3,
ν = 0.4) and Delrin (Y = 3.1 GPa, ρ = 1394 kg/m3, ν = 0.4).
As seen in Fig. 7(e), changing the material properties does
change the absolute value of the crack velocity. However,
as shown in Fig. 7(f), all of the curves can be collapsed by
normalizing the crack velocity by the Rayleigh velocity of each
material (acrylic, cR: 1017 m/s; impact-modified acrylic, cR:
715 m/s; Delrin, cR: 841 m/s). This suggests that, independent
of the specific details of the material, crack velocity can be
controlled simply by changing the perforation geometry.

Thus, regardless of the specific failure properties of a
material, a metamaterial can be constructed from it that will fail
in a manner determined by geometry alone. Simply by tuning
two geometric control parameters (s/d and l/d), the failure
mode can be tuned to transition from failure via a running
crack to failure via the breaking of struts at random positions.
Furthermore, in the running crack regime, the crack velocity
can be additionally controlled by adjusting s/d.

VI. CONCLUSION

Failure of an elastic solid is often characterized as either
ductile or brittle, i.e., either occurring via highly dissipative,
slow plastic flow or by rapid, dynamic crack propagation.
Some correlations exist between material microstructure and
failure mode; polycrystalline materials have a tendency to
fail ductility [2], while amorphous materials are more likely
to fail in a brittle manner [5]. However, these correlations

are not one-to-one; furthermore, some materials can exhibit
a transition from brittle to ductile failure as a function of
temperature [34,35]. Clearly, the link between atomic structure
and fracture behavior is nuanced.
The work presented here has explored how the geometry of a
metamaterial can influence how it fails under tension. In these
materials, the geometry of the structure is easily accessible and
tunable—they are created simply by introducing an array of
holes in an otherwise solid sheet of material. In these perforated
geometries, the transition in failure dynamics can be directly
linked to changes in the underlying structure. I have shown
that the failure behavior of a perforated sheet is modified as the
material becomes more sparse, and as strut bending becomes
more important. Furthermore, I demonstrate that this transition
between failure modes can be connected to a loss of stress
enhancement due to the sparse geometry.

This transition in dynamics illustrates that perforating
a continuum material does more than modify its elastic
constants, or change its failure strength. Constructing a
metamaterial in this way allows for a new kind of material,
one that has a tunable mode of failure. Simply by choosing
appropriate geometric parameters, the entire dynamics of the
failure process can be adjusted. This design principle has a
broad applicability beyond the 1D system studied in the present
work, see [14] for a systematic study of tunable failure in
various types of soft elastic networks whose elastic moduli
can be controlled by connectivity of geometry. The change in
dynamics observed here may be reminiscent of the transition
seen in the fiber bundle model of 1D failure [15–17], where
catastrophic failure of a complete bundle transitions to failure
that occurs more locally. However, in this model the control
parameter for the transition is the amount of disorder present
in the bond breaking strengths. In these experiments, geometry
was varied while the amount of disorder was held fixed. Thus,
the transition observed here is distinctly different from the
transition studied in these models, and it represents another
control parameter for failure dynamics.

ACKNOWLEDGMENTS

I thank Sid Nagel for his insight and support; our many
fruitful discussions greatly enhanced this work. I am also
grateful to Bryan Chen, Efi Efrati, William Irvine, Noah
Mitchell, Vincenzo Vitelli, and Wendy Zhang for helpful
discussions. This work was supported by the National Sci-
ence Foundation under Grant No. DMR-1404841, the U.S.
Department of Energy, by Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering under Award
No. DE-FG02-03ER46088, and by the NSF-MRSEC under
Grant No. DMR-1420709 through the use of the Chicago
MRSEC Facilities.

[1] V. Tvergaard, Adv. Appl. Mech. 27, 83 (1990).
[2] W. Garrison Jr. and N. Moody, J. Phys. Chem. Solids 48, 1035

(1987).
[3] J. Schijve, Fatigue of Structures and Materials, 2nd ed.

(Springer, Dordrecht, 2008).
[4] P. Forsyth, Acta Metall. 11, 703 (1963).

[5] A. A. Griffith, Philos. Trans. R. Soc. London, Ser. A 221, 163
(1921).

[6] E. Bouchbinder, J. Fineberg, and M. Marder, Ann. Rev.
Condens. Matter Phys. 1, 371 (2010).

[7] L. B. Freund, Dynamic Fracture Mechanics (Cambridge
University Press, Cambridge, UK, 1998).

062404-7

http://dx.doi.org/10.1016/S0065-2156(08)70195-9
http://dx.doi.org/10.1016/S0065-2156(08)70195-9
http://dx.doi.org/10.1016/S0065-2156(08)70195-9
http://dx.doi.org/10.1016/S0065-2156(08)70195-9
http://dx.doi.org/10.1016/0022-3697(87)90118-1
http://dx.doi.org/10.1016/0022-3697(87)90118-1
http://dx.doi.org/10.1016/0022-3697(87)90118-1
http://dx.doi.org/10.1016/0022-3697(87)90118-1
http://dx.doi.org/10.1016/0001-6160(63)90008-7
http://dx.doi.org/10.1016/0001-6160(63)90008-7
http://dx.doi.org/10.1016/0001-6160(63)90008-7
http://dx.doi.org/10.1016/0001-6160(63)90008-7
http://dx.doi.org/10.1098/rsta.1921.0006
http://dx.doi.org/10.1098/rsta.1921.0006
http://dx.doi.org/10.1098/rsta.1921.0006
http://dx.doi.org/10.1098/rsta.1921.0006
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104019
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104019
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104019
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104019


MICHELLE M. DRISCOLL PHYSICAL REVIEW E 90, 062404 (2014)

[8] G. R. Irwin, J. Appl. Mech. 24, 361 (1957).
[9] R. Goldstein and R. Salganik, Int. J. Fracture 10, 507 (1974).

[10] A. Day, K. Snyder, E. Garboczi, and M. Thorpe, J. Mech. Phys.
Solids 40, 1031 (1992).

[11] I. Jasiuk, J. Chen, and M. Thorpe, Appl. Mech. Rev. 47, S18
(1994).

[12] L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and
Properties, 2nd ed. (Cambridge University Press, Cambridge,
UK, 1997).

[13] N. Hu, B. Wang, G. Tan, Z. Yao, and W. Yuan, Compos. Sci.
Technol. 60, 1811 (2000).

[14] M. M. Driscoll, R. S. Nagel, B. G.-ge Chen, T. Beuman, and V.
Vitelli (unpublished).

[15] H. Herrmann, F. Kun, and F. Raischel, in IUTAM Symposium
on Scaling in Solid Mechanics (Springer, Netherlands, 2009),
pp. 263–272.

[16] H. Daniels, Proc. R. Soc. London, Ser. A 183, 405 (1945).
[17] S. Pradhan, A. Hansen, and B. K. Chakrabarti, Rev. Mod. Phys.

82, 499 (2010).
[18] C. Chen, T. Lu, and N. Fleck, Int. J. Mech. Sci. 43, 487 (2001).
[19] J. Huang and L. Gibson, Acta Metall. Mater. 39, 1617 (1991).
[20] N. A. Fleck and X. Qiu, J. Mech. Phys. Solids 55, 562 (2007).
[21] M. Ryvkin and J. Aboudi, Eng. Fracture Mech. 78, 2153 (2011).

[22] E. Dubensky and D. A. Koss, Metall. Trans. A 18, 1887
(1987).

[23] A. B. Geltmacher, D. Koss, P. Matic, and M. Stout, Acta Mater.
44, 2201 (1996).

[24] P. Magnusen, D. Srolovitz, and D. Koss, Acta Metall. Mater. 38,
1013 (1990).

[25] T. Meunier, S. G. Gopalakrishnan, and A. Weck, Polymer 54,
1530 (2013).

[26] A. N. Stroh, Adv. Phys. 6, 418 (1957).
[27] E. Sharon and J. Fineberg, Phys. Rev. B 54, 7128 (1996).
[28] K. Ravi-Chandar and W. Knauss, Int. J. Fracture 26, 65 (1984).
[29] A. Livne, O. Ben-David, and J. Fineberg, Phys. Rev. Lett. 98,

124301 (2007).
[30] R. D. Deegan, P. J. Petersan, M. Marder, and H. L. Swinney,

Phys. Rev. Lett. 88, 014304 (2001).
[31] J. Fineberg and M. Marder, Phys. Rep. 313, 1 (1999).
[32] P. Washabaugh and W. Knauss, Int. J. Fracture 65, 97 (1994).
[33] S. Agrawal, D. Patidar, M. Dixit, K. Sharma, and N. Saxena,

in 5th National Conference on Thermophysical Properties
(NCTP-09) (AIP, New York, 2010), Vol. 1249, pp. 79–82.

[34] C. S. John, Philos. Mag. 32, 1193 (1975).
[35] P. Gumbsch, J. Riedle, A. Hartmaier, and H. F. Fischmeister,

Science 282, 1293 (1998).

062404-8

http://dx.doi.org/10.1007/BF00155254
http://dx.doi.org/10.1007/BF00155254
http://dx.doi.org/10.1007/BF00155254
http://dx.doi.org/10.1007/BF00155254
http://dx.doi.org/10.1016/0022-5096(92)90061-6
http://dx.doi.org/10.1016/0022-5096(92)90061-6
http://dx.doi.org/10.1016/0022-5096(92)90061-6
http://dx.doi.org/10.1016/0022-5096(92)90061-6
http://dx.doi.org/10.1115/1.3122813
http://dx.doi.org/10.1115/1.3122813
http://dx.doi.org/10.1115/1.3122813
http://dx.doi.org/10.1115/1.3122813
http://dx.doi.org/10.1016/S0266-3538(00)00054-3
http://dx.doi.org/10.1016/S0266-3538(00)00054-3
http://dx.doi.org/10.1016/S0266-3538(00)00054-3
http://dx.doi.org/10.1016/S0266-3538(00)00054-3
http://dx.doi.org/10.1098/rspa.1945.0011
http://dx.doi.org/10.1098/rspa.1945.0011
http://dx.doi.org/10.1098/rspa.1945.0011
http://dx.doi.org/10.1098/rspa.1945.0011
http://dx.doi.org/10.1103/RevModPhys.82.499
http://dx.doi.org/10.1103/RevModPhys.82.499
http://dx.doi.org/10.1103/RevModPhys.82.499
http://dx.doi.org/10.1103/RevModPhys.82.499
http://dx.doi.org/10.1016/S0020-7403(99)00122-8
http://dx.doi.org/10.1016/S0020-7403(99)00122-8
http://dx.doi.org/10.1016/S0020-7403(99)00122-8
http://dx.doi.org/10.1016/S0020-7403(99)00122-8
http://dx.doi.org/10.1016/0956-7151(91)90249-Z
http://dx.doi.org/10.1016/0956-7151(91)90249-Z
http://dx.doi.org/10.1016/0956-7151(91)90249-Z
http://dx.doi.org/10.1016/0956-7151(91)90249-Z
http://dx.doi.org/10.1016/j.jmps.2006.08.004
http://dx.doi.org/10.1016/j.jmps.2006.08.004
http://dx.doi.org/10.1016/j.jmps.2006.08.004
http://dx.doi.org/10.1016/j.jmps.2006.08.004
http://dx.doi.org/10.1016/j.engfracmech.2011.04.004
http://dx.doi.org/10.1016/j.engfracmech.2011.04.004
http://dx.doi.org/10.1016/j.engfracmech.2011.04.004
http://dx.doi.org/10.1016/j.engfracmech.2011.04.004
http://dx.doi.org/10.1007/BF02647018
http://dx.doi.org/10.1007/BF02647018
http://dx.doi.org/10.1007/BF02647018
http://dx.doi.org/10.1007/BF02647018
http://dx.doi.org/10.1016/1359-6454(95)00366-5
http://dx.doi.org/10.1016/1359-6454(95)00366-5
http://dx.doi.org/10.1016/1359-6454(95)00366-5
http://dx.doi.org/10.1016/1359-6454(95)00366-5
http://dx.doi.org/10.1016/0956-7151(90)90173-E
http://dx.doi.org/10.1016/0956-7151(90)90173-E
http://dx.doi.org/10.1016/0956-7151(90)90173-E
http://dx.doi.org/10.1016/0956-7151(90)90173-E
http://dx.doi.org/10.1016/j.polymer.2013.01.031
http://dx.doi.org/10.1016/j.polymer.2013.01.031
http://dx.doi.org/10.1016/j.polymer.2013.01.031
http://dx.doi.org/10.1016/j.polymer.2013.01.031
http://dx.doi.org/10.1080/00018735700101406
http://dx.doi.org/10.1080/00018735700101406
http://dx.doi.org/10.1080/00018735700101406
http://dx.doi.org/10.1080/00018735700101406
http://dx.doi.org/10.1103/PhysRevB.54.7128
http://dx.doi.org/10.1103/PhysRevB.54.7128
http://dx.doi.org/10.1103/PhysRevB.54.7128
http://dx.doi.org/10.1103/PhysRevB.54.7128
http://dx.doi.org/10.1007/BF01152313
http://dx.doi.org/10.1007/BF01152313
http://dx.doi.org/10.1007/BF01152313
http://dx.doi.org/10.1007/BF01152313
http://dx.doi.org/10.1103/PhysRevLett.98.124301
http://dx.doi.org/10.1103/PhysRevLett.98.124301
http://dx.doi.org/10.1103/PhysRevLett.98.124301
http://dx.doi.org/10.1103/PhysRevLett.98.124301
http://dx.doi.org/10.1103/PhysRevLett.88.014304
http://dx.doi.org/10.1103/PhysRevLett.88.014304
http://dx.doi.org/10.1103/PhysRevLett.88.014304
http://dx.doi.org/10.1103/PhysRevLett.88.014304
http://dx.doi.org/10.1016/S0370-1573(98)00085-4
http://dx.doi.org/10.1016/S0370-1573(98)00085-4
http://dx.doi.org/10.1016/S0370-1573(98)00085-4
http://dx.doi.org/10.1016/S0370-1573(98)00085-4
http://dx.doi.org/10.1080/14786437508228099
http://dx.doi.org/10.1080/14786437508228099
http://dx.doi.org/10.1080/14786437508228099
http://dx.doi.org/10.1080/14786437508228099
http://dx.doi.org/10.1126/science.282.5392.1293
http://dx.doi.org/10.1126/science.282.5392.1293
http://dx.doi.org/10.1126/science.282.5392.1293
http://dx.doi.org/10.1126/science.282.5392.1293



