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Abstract

The problem of a rigid disk rolling down a ramp is a classic problem given to students in

introductory mechanics courses. In contrast, systematic studies on the rolling behavior of an

ellipse have only recently emerged. Unlike a rolling disk, where the geometric center remains

at a constant height from the floor, the center of a rotating ellipse changes nonlinearly due to

its eccentric shape. This eccentricity introduces new modes of motion beyond rolling, including

rocking and hopping. Leveraging this multi-motion behavior, we design an ellipsoidal actuator

which exhibits both rolling and hopping behaviors in response to changes in the applied angular

velocity. Using a simple geometric framework, we successfully capture the motion of the actuator

as a force-driven rigid ellipsoid on a non-slip flat surface, and identify the critical angular velocity

for the rolling-to-hopping transition. Furthermore, by adding deformability to the actuator, we

unlock new functionalities, enabling soft actuators that can climb slopes and work together to

collectively ascend stairs.
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Driven actuators are the foundation of robot motion. The simplest actuator—a disk-

shaped wheel—is an incredibly efficient way to enhance transport. Here we show that, by

adding eccentricity, we create an new type of actuator that can not only roll, but also hop.

Moreover, by adding extra nonlinearities by introducing a deformable actuator, we add even

more functionalities to this simple system. Our actuator is driven by external magnetic

fields, a widely used approach in the soft matter community due to its suitability for a

wide range of situations and environments [1, 2], including biological settings [3]. Magnetic

fields are especially useful for guiding soft actuators through vessel-like environments [4]

and for reshaping and controlling the behavior of soft robots [5, 6]. Typically, the motion of

drop-like and magnetically responsive soft actuators is controlled by mechanically moving a

magnet [7], applying a strong gradient field [8], or using switchable magnetic coil arrays [9].

In contrast, our system applies a uniform, rotating magnetic field to the actuator, which we

use as a controlled system to explore how the behavior of a rotating object changes with its

shape and angular velocity.

Our soft actuators are ferrofluid liquid marbles [10–12], drops of magnetic liquid (Ferrotec,

EMG 700) coated with a shell of hydrophobic powder (Runaway Bike Store, 1 − 3 µm

Teflon powder). We apply a DC magnetic field to horizontally stretch the ferrofluid marble

(perpendicular to gravity), allowing approximately 40% of its water content to evaporate

while it remains stretched. As the marble deflates, its surface crumples [13, 14], causing the

powder particles to jam together and form a stiff outer shell, resulting in what we refer to as

a rigid actuator. We then place the rigid actuator on a glass slide at the center of two pairs of

Helmholtz coils and apply a rotating magnetic field with the axis of rotation perpendicular

to gravity. The detail of the experimental setup is provided in Methods section. The rotating

magnetic field exerts a magnetic torque τext that rotates the actuator against gravitational

torque (see Fig. 1(a)). Our rigid actuator do not deform in the applied field (see Fig. S2).

Ferrofluid droplets with no shell have been employed as rolling actuators [15], but moving

these drops requires overcoming the dissipation created by contact-line pinning of the drop

to the surface. Compared to the rolling droplet, our actuator avoids contact line hysteresis,

as it does not adhere to the substrate, thus allowing it to move faster and more efficiently.

When a spherical actuator rotates, its geometric center is always at the same height,

thus it can only roll (or slip). Conversely, an elliptical actuator has eccentric shape, and

we find this nonlinearity allows for three distinct motions: rocking, rolling, and hopping (as
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FIG. 1: Rocking, rolling and hopping of a rigid actuator. As illustrated in (a-c), a rotating

ellipsoidal actuator exhibits three distinctive motions: rolling, rocking, and hopping, which depend

on the applied field strength and the field frequency, as shown in the state diagram (d). Rocking

occurs when the applied magnetic torque is below the critical threshold (corresponding to the

critical applied magnetic field strength, HR.) Above HR, the actuator either rolls or hops, with the

rolling-hopping transition depending solely on the applied frequency. In the experiments, rolling

motion (e) indicates that the actuator always maintains contact with the floor, while hopping

motion (f) denotes detachment from the floor, which can be visualized by separation from its

shadow.

illustrated in Fig. 1(a), and video 1-3 [16]). Rocking refers to the actuator moving back and

forth without any net displacement over a cycle (Fig. 1(b)). Rolling occurs when the actuator

flips over and moves in the controlled direction (Fig. 1(a)). Hopping is defined as, when the

actuator detaches from the floor (Fig. 1(c)), its vertical velocity remains positive, or vz > 0.

Which of these modes of motion is observed is governed by both the applied field strength

and the driving frequency (Fig. 1(d)). Below a critical field strength, HR, the actuator rocks

back and forth without net displacement, as the rotating field lacks the torque to overcome

gravity. To determine HR, we apply a DC magnetic field along the z-axis, opposing gravity,

and observe that the actuator stands upright only when the field strength exceeds 55 G,
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closely matching the criteria observed in the state diagram (Fig. 1(d).) Notably, the field

strength required to maintain the actuator in an upright position (55 G) is slightly higher

than that needed for rolling (50 G). This difference arises because the lifting experiment is

a torque-balanced state at equilibrium (with no angular velocity), whereas, in the rolling

experiment, the field drives the actuator with angular velocity. As a result, the actuator

surpasses the torque threshold due to its kinetic energy, enabling it to roll at a lower applied

field strength.

Beyond HR, the actuator’s motion depends solely on the applied field frequency. Below

a critical frequency, fc, the actuator synchronizes its major axis with the rotating magnetic

field and rolls along the surface (Fig. 1(e)). Once exceeding fc, the actuator transitions to

hopping (Fig. 1(f)). Interestingly, the rolling speed is independent of both the actuator’s

mass and the applied field strength and is instead determined solely by its shape. This

behavior suggests that the rolling motion is governed by simple geometric constraints.

Therefore, we model the rigid actuator as a rolling ellipsoid. The motion of a rolling

ellipse is modeled by enforcing the geometric constraint that one point on the object must

always be in contact with the floor and must not slip [17–19]. Unlike a rolling circle, the

constraints are nonlinear due to the eccentric shape of the ellipse. In our system, the actuator

is driven by a rotating field at a fixed angular velocity. Therefore, we modify the motion for

a rolling ellipse by introducing a driving term, η, as follows:

(A(θ, a, b) + I) θ̈ +B(θ, a, b)θ̇2 + gC(θ, a, b) = η(2πfd − θ̇) (1)

where I = a2+b2

5
is the moment of inertia for an ellipsoid (without the mass term), A, B,

and C represent the geometric constraints that govern the rolling motion of an ellipsoid on

a non-slip flat surface in one direction (see Fig. 2(a)), and g is the gravitational acceleration

constant. A, B, and C (provided in the Methods section) depend on the rotational angle θ,

as well as the ellipsoid’s minor axis a and major axis b, viewed from the side. The model

ignores the third axis of the ellipsoid, as the actuator is forced to rotate independently to

it. Thus, our model resembles a 2D elliptical disk, except that we must use the moment of

inertia which corresponds to a 3D object. The right-hand side of Eq. 1 represents the applied

torque, balanced by system dissipation, where η is the strength of the balancing torque (the

only fitting parameter in Eq. 1), and fd is the rotational frequency of the applied magnetic

field from the experiments. We numerically solve this equation and compare the results with
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FIG. 2: Geometric model for the rolling actuator. We develop a model to describe the rolling

motion of a forced-rotating ellipsoid moving in one direction, as illustrated in (a), which is governed

purely by geometric constraints. a and b are the short and long axes, and θ is the rotational angle

from a to the x axis. We numerically solve the model, demonstrating excellent agreement with

the experimental observation in (b). The white dots represent the geometric center of the rolling

actuator, while the yellow solid line shows the model prediction, using the only fitting parameter

η = 0.5. The model further predicts the critical applied frequency fc at which the actuator

transitions to hopping. For a given aspect ratio with a fixed b, the critical frequency approaches

infinity as the shape approaches to a sphere, shown in (c). Using the dimensions a = 0.545 mm

and b = 1.685 mm from the phase diagram (Fig. 1(d)), we calculate fc = 12.8 Hz, which is slightly

higher than the observed critical frequency (11 Hz), likely due to differences between an ideal

ellipsoid and the real actuator.

our experimental data. As illustrated in Fig. 2(b), this simple geometric model effectively

captures the rolling motion of our actuator. In Fig. S3, we show that this model correctly
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captures both components of displacement of the actuator’s geometric center in time.

To find the rolling-hopping transition, we further derive the massless normal force

f⊥/m = z̈(θ̈) + g (2)

wherem is the actuator mass, and z̈ is its acceleration in the z direction, which can be derived

from θ̈ in Eq. 1. The detail derivation of f⊥/m is provided in the Methods section. The

condition f⊥/m = 0 marks the transition from rolling to hopping. For a given geometry, we

can compute f⊥/m as a function of θ and θ̇. Since the actuator rotates synchronously with

the applied frequency (θ̇ = 2πfd), we can determine whether the actuator will hop at a given

frequency. As shown in Fig. 2(c), the critical driven frequency fc gradually increases toward

infinity as the ellipsoid’s shape approaches to that of a sphere, because a rolling sphere

maintains a constant normal force f⊥/m = g, which is always greater than 0. Using the

geometric values from Fig. 1(b) and Eq. 2, we calculate fc = 12.8 Hz, which is only slightly

higher than the observed critical frequency of 11 Hz. We attribute this small discrepancy to

the geometrical differences between a perfect ellipsoid and the actual shape of the actuator.

Additionally, our model assumes a point contact that moves smoothly along the surface of

an ellipsoid. However, the real actuator has a non-smooth surface, which makes its contact

bumpy and alters how the normal force supports its motion during contact.

We control the rolling-to-hopping transition by adding further nonlinearity to the system

in the form of deformability. By reducing the rigidity of the shell, we can in situ reshape

the actuator in response to the applied field, thereby controlling the transition. To maintain

the actuator’s deformability, we omit the evaporation step during the assembly process. We

again observe the three modes of motion: rocking, rolling and hopping (see Fig. 3 and video

4-6 [16]), similar to those exhibited by the rigid actuator. However, the critical applied

field strength HR for rolling a soft actuator is higher than that of a rolling rigid actuator.

To determine the criteria for the rocking motion, we apply a DC magnetic field to the soft

actuator and measure its deformation in response to the magnetic field, δd (its height over its

width.) As shown in Fig. S4, δd < 1 at low applied field strength because gravity dominates

the shape and flattens the actuator. When δd = 1, the applied deformation balances the

initial deformation due to gravity, and the actuator becomes spherical, which initiates the

rolling motion. We experimentally find δd = 1 at HR = 88±12 G (see Fig. S4), which aligns

with the observed critical field strength in Fig. 3(a). We note that HR for the soft actuator
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FIG. 3: Rocking, rolling, and hopping of a soft actuator. The phase diagram in (a) illustrates

the three distinct motion modes of a soft actuator, with corresponding visualizations in the right

panels (b-d). The actuator deformation is defined as its height over its width, or δd = ℓ1/ℓ2, as

shown in the first panel of (b). Rocking occurs below HR, where the applied deformation is smaller

than the initial deformation caused by gravity (δd < 1). As a result, the net displacement is zero,

as shown in the last panel of (b). Once the applied deformation dominates, the actuator transitions

to either rolling (c) or hopping (d), depending on both the applied frequency and field strength.

is higher than the field required for the rigid actuator to rock. This can be understood

because the soft actuator deforms in response to the applied field; thus, the change in free

energy due to the applied magnetic field not only rotates the magnetic dipole moment of

the soft actuator but also deforms its shape. This deformation also modifies the critical

frequency, fc, for the rolling-hopping transition; that is, the soft actuator elongates with a

higher applied magnetic field, shifting the transition to a lower frequency. We estimate fc

for the rolling-hopping transition based on the actuator’s shape at each field strength, as

shown in Fig. S5. As the actuator elongates under higher field strengths, its aspect ratio

approaches 0, leading to a decrease in fc. While our model predicts fc to be within the

same order of magnitude as the experiments, the observed decreasing trend deviates from

the model. This discrepancy can be attributed to the continuous deformation of the soft

actuator, influenced by a combination of surface energy, elasticity, mass, and the magnetic

field—factors that extend beyond the scope of our simple geometric model.

While soft actuators require more complex models for a quantitative understanding of
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FIG. 4: New functions with deformability. Soft actuators deform to interact with complex

environments, enabling them to reach locations beyond the capabilities of stiff actuators. When a

stiff actuator climbs a ramp, the frictional force is insufficient to support rolling motion, causing

the stiff ferromarble to slip off at a maximum height (a). In contrast, a soft actuator has a larger

frictional force due to its greater contact area, allowing it to roll up the entire ramp (b). In collective

motions, two connected rigid actuators attempt to climb a step but slip off (c). Meanwhile, the

soft actuators pile up, pushing the upper one to reach the next step (d). The two actuators are

labeled with numbers and outlined in color. The circles in all figures indicate the geometric centers

of the actuators, and the colormap represents time evolution.

their behavior, their inherent deformability introduces new functionalities and broadens their

potential applications. For instance, a rigid actuator rolling uphill often slips off due to

insufficient frictional force (see Fig.4(a), video 7 [16]). In contrast, a soft actuator deforms

and has a larger contact area with the substrate, which results in a significantly greater

frictional force [20]. As a result, it can easily roll up a hill that a rigid actuator cannot

climb (see Fig.4(b), video 8 [16]). Additionally, when interacting with complex geometries,

such as steps, rigid actuators tend to slide off when they make contact with the side of the

step (see Fig.4(c), video 9 [16]). In contrast, soft actuators adapt their shape to the step,

enabling successful climbing (see Fig.4(d), video 10 [16]). Moreover, collections of these soft

actuators can climb over each other, effectively ”boosting” one another over obstacles in

their path (see video 11 [16]).

In this work, we demonstrate a new type of simple actuator with multi-motion capabil-

ities. We model and control its motion, and demonstrate that this ellipsoidal actuator can
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navigate through complex environments such as mazes (see video 12 [16]). Notably, our

model does not specify the source of the driving force, suggesting that other forces, such as

rotational electric fields, could produce similar behaviors. Our actuator serves not only as a

model for studying fundamental physics—specifically, how nonspherical objects move—but

also opens avenues for investigating soft robotic control and navigation in complex environ-

ments [21], collective behavior in active/driven soft granular systems [22–24], and complex

interactions between materials with elasticity, plasticity, and porosity [25]. For instance,

when two actuators come into contact, depending on the contact area and duration, they

either bounce off each other or merge into a larger actuator. Studying this complex merging

behavior reveals how to tune the actuator’s speed by merging them into new shapes, as

well as how liquid propagates and redistributes in porous media. Alternatively, a rapidly

rotating field eventually overcomes the elastic shell of the actuator held by surface tension,

splitting the actuator in half [26]. Understanding how to control and initiate this splitting

would allow us to regulate the size of the actuator and generate new actuators in situ.

Experiments. The actuator is made of commercial ferrofluid (Ferrotec, EMG 700, fluid

density ρ = 1290 kg/m3, viscosity µ = 5 cP, saturation magnetizationMs = 355 G) wrapped

with polytetrafluoroethylene (PTFE) Teflon powder (Runaway Bike Store, 1.6−3 µm). For

each actuator, we drop a 7.5 µL ferrofluid droplet on a powder bed, and roll the bed until the

droplet is coated with Teflon powder. For a rigid actuator, we applied a horizontal constant

magnetic field (100 G) to stretch the actuator for 15 minutes while letting the water content

evaporate. The mass of an actuator goes down by 40% during the evaporation step. The

surface of the actuator crumbles and stiffens during the process, which fixes the shape. We

then use a tweezer to gently scoop the rigid actuator to a microscope glass slide and transfer

the slide to the center the Helmholtz coils. For a soft actuator, we skip the evaporation

process. The soft actuator is roughly 7.0 µL in size, corresponding to 2.5 mm in radius

when it is first deposited on the glass slide. For a rigid actuator, the length of the two short

axes are between 0.5 mm to 1.0 mm, and the long axis is ≳ 1.5 mm.

We drive the current from two bipolar amplifiers (Kepco BOP 50-8ML) to two orthogonal

pairs of Helmholtz coils. In Fig. S1, we illustrate the Helmholtz coils setup with a real picture.

The first pair provide the magnetic field in the z direction, and the second pair provide the

field in the x direction. The maximum magnetic field with this setup is 160 G. We then use

a DAQ device (Measurement Computing USB-1208HS-4AO) to control the phase between
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the current sent to two coils to generate a rotational magnetic field. In all experiments

presented in the paper, the range of the field strength is 10− 150 G and 0.5− 20 Hz.

We use a high-speed camera (Phantom, VEO 640) to capture the actuator’s motion, with

recording frame rates ranging from 100 to 2500 fps, depending on the applied field frequency.

The camera is slightly tilted (0.8◦) to capture the reflection of the actuators, which helps the

image analysis process. ImageJ and custom Python code are used to measure the actuator’s

motion.

For the ramp experiments, we bend a thin Teflon slide (1.6 mm thick and 20 mm wide)

and fix its shape with a metal block. For the step experiments, we 3D-print the steps and

fix the steps on a glass slide with double-sided tape. The height of the first step is higher

than the other steps, about 3.3 mm, due to the thickness of the double-sided tape, and the

height of the second and the third ones are 3 mm. The width of the steps is 20 mm.

Model. For a given short axis a and long axis b (see fig 2), with its eccentricity ϵ2 = 1−a2/b2,

the geometric constraints A, B, and C are [18]

A = b2
1 + (1− ϵ2)2 tan2 θ

1 + (1− ϵ2) tan2 θ

B = b2ϵ2
(1− ϵ2) tan θ(1 + tan2 θ)

(1 + (1− ϵ2) tan2 θ)
2

C = bϵ2
tan θ

(1 + tan2 θ)
√
1− ϵ2 sin2 θ

Note that the angle θ is defined as the angle between the minor axis a to the x axis. Thus, θ =

0 when the ellipsoid stands up (the major axis is parallel to the z.) When a = b (representing

a circle), B and C go to 0, and A = a2, which agrees with the equation of motion of a rolling

disk on a flat surface. We solved Eq. 1 with Python package scipy.integrate.odeint, and set

the initial condition as θ = π/2 and θ̇ = 0.

The massless normal force f⊥/m = z̈ + g, where z = b
√
1− ϵ2 sin2 θ, can be rewritten as

f⊥/m =
∂2z

∂θ2
θ̇2 +

∂z

∂θ
θ̈ + g (3)

Replacing θ̈ using Eq. 1, we have

f⊥/m =
α + β

∆
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where

α = ϵ2θ̇2
2
√
2b(4(7− 7ϵ2 + 3ϵ4) cos 2θ − 3ϵ2(−2 + ϵ2)(3 + cos 4θ))√

2− ϵ2 + ϵ2 cos 2θ

β = −56g − gϵ2(56− 19ϵ2 + 24(−2 + ϵ2) cos 2θ − 5ϵ2 cos 4θ)

∆ = −56 + 8ϵ2
(
7− 3ϵ2 + 3(−2 + ϵ2) cos 2θ

)

When a = b, f⊥/m = g and is always larger than 0. When a ̸= b, we numerically solve

Eq. 3 to identify the minimum value of θ̇ = fc that gives f⊥/m = 0 for different aspect ratio

(a/b), as shown with the blue solid line in Fig. 2.
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Supporting videos

• Video 1: Rocking of a rigid actuator. An ellipsoidal rigid actuator
rocks back and forth on a flat surface. The applied magnetic field is 40 G
at 1 Hz. The experiment is recorded at 500 fps.

• Video 2: Rolling of a rigid actuator. An ellipsoidal rigid actuator
rolls along a flat surface. The applied magnetic field is 10 G at 0.5 Hz.
The experiment is recorded at 100 fps.

• Video 3: Hopping of a rigid actuator. An ellipsoidal rigid actuator
hops on a flat surface. The applied magnetic field is 150 G at 15 Hz. The
experiment is recorded at 500 fps.

• Video 4: Rocking of a soft actuator. An ellipsoidal soft actuator
rocks back and forth on a flat surface. The applied magnetic field is 40 G
at 1 Hz. The experiment is recorded at 1500 fps.

• Video 5: Rolling of a soft actuator. An ellipsoidal soft actuator rolls
along a flat surface The applied magnetic field is 100 G at 10 Hz. The
experiment is recorded at 500 fps.

• Video 6: Hopping of a soft actuator. An ellipsoidal soft actuator
hops on a flat surface The applied magnetic field is 150 G at 15 Hz. The
experiment is recorded at 2500 fps.

• Video 7: Stiff actuator climbing up a ramp. A stiff actuator climbs
and slips off the ramp. The applied magnetic field is 100 G at 5 Hz. The
experiment is recorded at 500 fps.
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• Video 8: Soft actuator climbing up a ramp. A soft actuator climbs
through the whole ramp. The applied magnetic field is 100 G at 5 Hz.
The experiment is recorded at 500 fps.

• Video 9: Two stiff actuators climbing steps. Two stiff actuators
self-chain together. They approach but slip off the step when contacting
the step. The applied magnetic field is 150 G at 0.5 Hz. The experiment
is recorded at 250 fps.

• Video 10: Two soft actuators climbing steps. Two soft actuators
self-chain together. They approach the step, and the first actuator pushes
the second actuator to the upper step. The applied magnetic field is 150 G
at 0.5 Hz. The experiment is recorded at 250 fps.

• Video 11: Collective behavior Actuators pile up together to climb
steps. The applied magnetic field is 100 G at 0.5 Hz. The experiment is
recorded at 150 fps.

• Video 12: Actuator moving in a maze. We control the direction of
the rotational magnetic field with a joystick, and thus control the direction
of the actuator motion. The maze is 3D-printed and fixed on a glass plate.
The applied magnetic field is 120 G at 0.5 Hz. The experiment is recorded
at 4 fps.
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1 Experimental setup

Sample
holder

Helmholtz coil
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z

𝑩

Actuator

Figure 1: Rotational magnetic fields setup. The two pairs of Helmholtz
coils are illustrated at the left panel, and a photograph at the right panel.
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2 Rigid actuator and soft actuator under a DC
magnetic field.
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Figure 2: Comparison between rigid and soft actuator. A rigid actuator
rotates and lines up with the applied DC magnetic field direction (a-b) while a
soft actuator stretches itself along the applied field direction (c-d). The applied
field strength is 150 G for the rigid actuator and 135 G for the soft actuator.

When we apply a DC magnetic field in the z direction (against gravity), a
rigid actuator rotates and lines up with the field direction, and a soft actuator
elongates itself along the field direction.
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3 Geometric center of a rolling actuator

(a) (b)

Figure 3: Geometric model captures the rolling actuator motion. The
geometric model captures the center of the rolling actuator over time. The data
come from fig.2.
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4 Deformation due to the applied field against
gravity

B

Figure 4: Magnetic field strength threshold to dominate the actuator’s
shape and trigger rolling motion. The aspect ratio of a soft actuator, δd,
is initially smaller than 1 because the gravity dominates its shape. As the
applied magnetic field increases, the actuator elongates along the field direction
(δd > 1). The black dashed line (δd = 1) marks the threshold of the required
field strength to make the actuator spherical and roll.

The soft actuator deforms along the direction of the applied field. For the
soft actuator to roll, the applied deformation due to the magnetic field must be
greater than its initial deformation caused by gravity. To capture the magnetic
field threshold, we calculate the actuator’s aspect ratio, δd, as its height over
its width, or δd = ℓ1/ℓ2. When δg = 1, the actuator resembles a sphere, and it
starts rolling. We fit the data with a line and find its intersection with 1, which
occurs at a field strength of 88± 12 G.
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5 Critical frequency fc for the rolling-hopping
transition of a soft actuator

rocking
rolling

hopping

𝑓𝑑

Figure 5: Transition predicted by geometric model The critical frequency
for the rolling-hopping transition predicted by the geometric model is off com-
pared to the observed data, as the shape of the soft actuator is deformed by
other factors beyond the geometric model.

We fit an ellipse to capture the shape of the soft actuator at a given magnetic
field, and use the major and minor axes to calculate the critical frequency, fc, for
the rolling-hopping transition. We believe that the offset between the predicted
and observed fc is due to the fact that the actuator deforms continuously as it
moves along the floor, which is not captured by the point-contact model.
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